SCHEME OF COURSE WORK

Course Details:

Course Title	NUMERICAL METHODS, PROBABILITY AND STATISTICS						
Course Code	20BM1111 L T P C 3 0 2 4						
Program:	B.Tech.						
Specialization:	CIVIL Engineering						
Semester	IV Semester						
Prerequisites	• Fundamentals of Set theory and calculus.						
	Basic concepts of Probability and Discrete Random Variables.						
	Duste concepts of Producing and Discrete Random Variables.						

Course Outcomes (COs): At the end of the Course, Student will be able to

1	Calculate a root of algebraic and transcendental equations. Explain the relation between
	the finite difference operators.
2	Solve ordinary differential equations numerically using Euler's and RK methods
3	Determine mean and variance of discrete and continuous random variables
4	Measure the confidence interval for the mean of a population and test a hypothesis concerning means
5	Test a hypothesis concerning variances and proportions

PROGRAM OUTCOMES:

- 1.Graduates will be able to apply the knowledge of mathematics, science, engineering fundamentals to solve complex civil engineering problems.
- 2.Graduates will attain the capability to identify, formulate and analyse problems related to civil engineering and substantiate the conclusions
- 3.Graduates will be in a position to design solutions for civil engineering problems and design system components and processes that meet the specified needs with appropriate consideration to public health and safety.
- 4.Graduates will be able to perform analysis and interpretation of data by using research methods such as design of experiments to synthesize the information and to provide valid conclusions.
- 5.Graduates will be able to select and apply appropriate techniques from the available resources and modern civil engineering and software tools, and will be able to predict and model complex engineering activities with an understanding of the practical limitations.
- 6.Graduates will be able to carry out their professional practice in civil engineering by appropriately considering and weighing the issues related to society and culture and the consequent responsibilities.
- 7.Graduates will be able to understand the impact of the professional engineering solutions on environmental safety and legal issues.
- 8.Graduates will transform into responsible citizens by resorting to professional ethics and norms of the engineering practice.
- 9.Graduates will be able to function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams.

- 10. Graduates will be able to communicate fluently on complex engineering activities with the engineering community and society, and will be able to prepare reports and make presentations effectively.
- 11. Graduates will be able to demonstrate knowledge and understanding of the engineering and management principles and apply the same while managing projects in multidisciplinary environments.
- 12. Graduates will engage themselves in independent and life-long learning in the broadest context of technological change while continuing professional practice in their specialized areas of civil engineering.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3										
CO-2	3	2										
CO-3	3	3										
CO-4	3	3										
CO-5	3	3										

Course Outcome versus Program Outcomes:

3 - Strongly correlated, 2 - Moderately correlated, 0 - No correlation

Program Specific Objectives (PSOs): The student must attain the knowledge and skills to

PSO-1	Collect, process and analyse the data from topographic surveys, remote sensing, hydrogeological investigations, geotechnical explorations, and integrate the data for planning of civil engineering infrastructure.
PSO-2	Analyse and design of substructures and superstructure for buildings, bridges, irrigation structures and pavements.
PSO-3	Estimate, cost evaluation, execution and management of civil engineering projects. With Regards

Course Outcome Versus Program Specific Outcomes:

COs	PSO1	PSO2	PSO3
CO-1	2	1	2
CO-2	2	1	2
CO-3	2	1	2
CO-4	2	1	2
CO-5	2	1	2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No Correlation

Assessment Methods:

Assignment / Quiz / Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Outcom es	Sample Questions	Teaching - Learning Strategy	Assessment Method & Schedule
1	Review of basic concepts in Solution of algebraic and transcendental equations.			Lecture / Problem solving	
2	Solution of algebraic and transcendental equations: bisection method, method of false position, Newton's method.Continuous	CO-1	Find the real root of the equation $cosx = xe^x$ using the regular falsi method corrected to four decimal places.	Lecture / Problem solving	Assignment (Week 3 - 4)/ Quiz -I (Week -8)/ Mid-Test 1 (Week 9)
3	Finite differences: Forward differences, Backward differences, Central differences, Differences of a polynomial, Other Difference operators, Relations between the operators .	CO-1	Form a table of difference for the function $f(x) = x^3 + 5x - 7$ for $x = -1, 0, 1, 2, 3, 4, 5$. Continue the table to obtain f(6).	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 3 - 4)/ Quiz -I (Week -8)
4	Newton's interpolation formulae- Newton's forward interpolation formula Newton's backward interpolation formula,	CO-1	Using Newton,s interpolation formula find the value of the $f(1.2)$ up to three decimals, given that f(1)=3.49, $f(1.4)=4.82$, $f(1.8)=5.96$, f(2.2)=6.5.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
5	Interpolation with un equal intervals: Lagrange interpolation, Inverse interpolation. Population and sample, Sampling distribution of the mean (σ known), Central Limit theorem (without Proof) and Problems	CO-1	Use the Lagranges formula to find the form of $f(x)$ for the given data $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
6	Numerical solutions of Ordinary differential equations: Euler's Method, Modified Euler's Method, Sampling distribution of the mean(σ unknown), Point Estimation, Maximum error and determination of sample size.	CO-2	Apply modified Euler's method to find an approximate value of y when x=1.2 in steps of 0.1, given that $\frac{dy}{dx} = x + y$ and y(1) = 1.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
7	Numerical solutions of Ordinary differential equations: Euler's Method, Modified Euler's Method Interval Estimation (Large sample and small sample) Runge-Kutta method of order 4 and	CO-2	Apply the fourth order Rungr-Kutta method to find an approximate value of y when x=1.2 in steps of 0.1, given that $\frac{dy}{dx} = x^2 + y^2$ and y(1) = 1.5.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)

	revision				
8	Review of basic concepts in Probability and Discrete Random variables Tests of Hypotheses (Introduction, Null hypotheses, Alternative hypotheses, Type –I,II errors, Level of significance, Hypotheses concerning one mean (Large and Small samples)	CO-3	A sample of 64 students have a mean weight of 70Kgs. Can this sample be regarded as a sample from a population with mean weight 65Kgs and standard deviation 25Kgs.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
9	Mid-Test 1				
10	Random variables - Probability density, Distribution. Calculating probabilities from Probability density, Determining Mean and Variance using Probability density Inference concerning two means (Large and Small samples), Paired t-test.	CO-3	1. If $f(x) = \frac{1}{18}(2x+3)$, for $2 \le x \le 4$ is density function, find $P(2 \le X \le 3)$ 2. Find Mean and Variance of the continuous density function $f(x) = \frac{3}{2}(1-x^2), 0 \le x \le 1A$ random sample of size 81 is taken from a population with $\sigma = 0.9$ and $\bar{x} = 20.8$. Construct a 95% confidence interval for the population mean.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (113-14)
11	Normal Distribution- Density and Properties. Calculating Normal Probabilities, Estimation of Proportions, Hypotheses concerning one Proportion, Hypotheses concerning several Proportions	CO-3	In a Normal distribution, 7% of the items are under 35 and 89% are under 63. Determine the mean and variance of the distribution	Lecture / Problem solving	Assignment (Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (13-14)
12	Normal Approximation to Binomial Distribution, Poisson distribution, Normal distribution: calculating normal probabilities.	CO-4	 Find the mean and variance of uniform distribution If 62% of clouds seeded with silver iodide show spectacular growth, what is the probability that among 40 clouds seeded with silver iodide at most 20 will show spectacular growth? 	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
13	Population and sample, Sampling distribution of the mean (σ known), sampling distribution of the mean (σ unknown),and Problems	CO-4	When we sample from infinite population what happens to the standard error of the mean if the sample size is (i) increased from 50 to 200 (ii) decreased from 640 to 40.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
14	Sampling distribution of the mean(σ unknown), Point Estimation, Maximum error and determination of sample size.	CO-5	The tensile strength of a new composite can be modeled as a normal distribution. A random sample of size 25 specimens has mean 45.3 and standard deviation 7.9. Does this information tend to support or refute the claim that the mean of the population is 40.5?	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)

15	Interval Estimation (Large sample and small sample)	CO-5	Five independent measurements of the flash point of Diesel oil gave the values 144, 147, 146, 142, 144. Assuming normality, determine a 99% confidence interval for the mean.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
16	Estimation of Proportions, Estimation of variance	CO-5	The machine puts out 16 imperfect articles in a sample of 500. After machine is overhead, it puts out 3 imperfect articles in a batch of 100. Has the machine improved.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
17	Hypotheses concerning one variance, Hypotheses concerning several Proportions	CO-5	The machine puts out 16 imperfect articles in a sample of 500. After machine is overhead, it puts out 3 imperfect articles in a batch of 100. Has the machine improved.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
18	Mid-Test 2				
19/20	END EXAM				